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Electrodynamics in Quantum Space-Time 
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It is shown that introducing quantum space-time into physics leads to a certain 
fictitious "gravitational" field with the "metric tensor" ff.~(z). This formalism 
allows us to reformulate Maxwell's equations in quantum space-time in accord- 
ance with the general covariance ,principle. A transformation method connecting 
the electromagnetic field tensor FV~(z) to the usual one Fg~(x) for the quantum 
system of reference is given. The electromagnetic force acting on the charged 
particle in quantum space-time is also defined and its equation of motion is 
investigated for a concrete case. In our scheme, a gauge-invariant description 
of electromagnetic processes in quantum space-time at small distances is achieved 
by using gauge transformation over the whole space-time on the large scale. 

1. INTRODUCTION 

In earlier work (Namsrai, 1986, 1987) within the framework of quantum 
space-time with noncommuting coordinates 

x ~" ~ 2  ~ = x"  + LII~'(x) (1) 

where H ' ( x )  is a matrix function of x ~' and L is the fundamental length, 
we have considered gravitational effects and have presented a mathematical 
method concerning tensor analysis. The aim of this paper is to generalize 
that formalism to electrodynamics and to study the equation of motion of 
charged panicles in quantum space-time. It turns out that the introduction 
of quantum space-time into physics on the level of the aftine connection 
gives rise to an additional fictitious "gravitational" field with metric tensor 
~.v(z). Such a formalism allows us to choose a way for the construction of 
electrodynamics by using the prescription of the general covariance principle 
reformulated in the case of the quantum system of reference [see Namsrai 
(1986) for details]. With this idea, we should first write down equations in 
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the same form as in the special theory of relativity and next explain how 
to change every quantity entering into these equations under an arbitrary 
transformation (including a quantum one) of coordinates. The equations 
obtained will be general, covariant and correct in the absence of quantum 
properties of space-time (L-~0) and therefore preserve their form in an 
arbitrary fictitious "gravitational" field under the condition that the system 
considered is sufficiently small with respect to the scale of the fields. 

It should be noted that the reformulation of the general covariance 
principle is possible only up to terms of order L 2 and that the tensor nature 
of the electromagnetic field tensor/6~'~(z) in quantum space-time is pres- 
erved at this level of accuracy. By analogy with the usual transformation 
case, in the quantum system of reference we find a simple connection 
between ~6~"(z) and the usual F~'(x), which ensures gauge invariance of 
generalized electrodynamics on the whole space-time obtained by averaging 
over the quantum one. In our case, a strict order of multipliers and a definite 
arrangement of tensor indices for any physical quantities are important. 
For example, the order of the product of operators defining the electromag- 
netic force acting on a charged particle may be chosen in such a way that 
this generalized averaged force in quantum space-time coincides exactly 
with the usual one. 

This paper is organized as follows. In Section 2 we introduce quantum 
space-time with coordinates (1) leading to an additional fictitious "gravita- 
tional" field with metric tensor ff,~(z). Section 3 deals with the electromag- 
netic field tensor F"~(z) and its transformation law with respect to the 
quantum system of reference. Here the connection between the averaged 
(/~'~(z)) and the usual electric E and magnetic H field strengths is also 
established. In Section 4 we generalize the Maxwell equations in quantum 
space-time by using the definition of the covariant derivative given by the 
affine connection 

f % ( z )  = a2x  
Oz ~ Oz" OX p 

in the fictitious "gravitational" field. Section 5 is devoted to the definition 
of the electromagnetic force acting on a charged particle in a quantum 
space-time and to the study of its equation of motion for a concrete case. 

2. QUANTUM SPACE-TIME AND FICTITIOUS 
"GRAVITATIONAL" FIELD 

Now we show that introducing quantum space-time with coordinates 
(1) leads to a fictitious "gravitational" field. Our construction is based on 
the affine connection method formulated by means of the principle of 
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constancy of the light velocity in different coordinate systems. In the 
language of proper time it means that dr 2 = invariant. For the usual four- 
dimensional Minkowski space the latter is given by 

where 

d r  2 = r l ,~  d x  ~' d x  ~ (2) 

- i  a = / 3  =1 ,2 ,3  
~7~ = a =/3 =0  

is the Minkowski metric. 
Before defining proper time dr 2 in quantum space-time we should note 

that in this case there exist two types of differentiation: left-hand and 
right-hand, leading to different results [see Namsrai (1987) for details]. For 
example, 

5 f ( z )  Oxq Of(z)  # f ( z )  o ~  _ Of(z)  oxq 
Oz ~ Ox q Ox q Oz ~ 

In particular, for the Jacobian type of transformation matrices 

Ox ~' 3z ;~ Oz x 8x"  

Oz" Ox '~ 3x '~ Oz" 

So, for the concrete form of transformation (1), we have 

Ox ~ 
- -  dz ~ = dx ~ -}- ~I2 T6P11, 6 dx ~ 
Oz u~ 

(3a) 
8 X  p p 

dz ~ z ~ = d x  

where 

ap 0H~ 0IIP 0IIP 0lI~ p8 
I . ~ - O x  ~ Ox ~ Ox ~ Ox ~ - I ~  (3b) 

Taking into account the equality (3a), it is natural to write (2) in the following 
invariant form: 

dr  a = dz" dz ~ ~ , , , ( z )  (4) 

where 

aX a OX ~ 
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is the generalized "metric" tensor in quantum space-time. Here it should 
be noted that in definition (4) a strict order of multipliers and a definite 
arrangement of tensor indices for ~,~(z) are important in the sense that 
any other kinds of expressions of the type of (4) break its invariant form. 
Thus, we see that a requirement of the proper time invariance principle in 
quantum space-time gives rise inevitably to the appearance of an additional 
fictitious "gravitational" field or equivalently a curved space-time with 
metric tensor (5). 

Now we explain how to change the equations of motion of a particle 
in the presence of this additional "gravitational" field. The equation of 
motion obtained by using the concept of quantum space for the nonrelativis- 
tic case and generalized by us (Namsrai, 1986) to the relativistic case has 
the form 

d2x '~ =fq(X) (6) 
dr 2 me 

where 

{~( V2~ -1/2 fq.u D2~ -1/2] 
s;o,)= 1-7/ , 1,1-7} 

and fq is some quantum force. In the particular case when the matrix 
function Hi(x) in (1) for the spatial quantum variable z i does not depend 
on the time, fq is determined by the formula 

m L  z (OH i 0217 i O21-I i . OI~  i 

f ~ ( x )  = - - -~ - -  \ ~ x "  OxJox ~ DJvm + ' - - O X  j OX m vJvm--oX n 

oHioHibj OHiOH i ) 
: ~ : - -  ~J (7)  

OX" OX a Ox j OX n 

(n = 1,2,3). 
Further, we assume that in the fictitious "gravitational" field given by 

the metric (5) the coordinates x ~ are functions of variables z ~ and equation 
(6) takes the form 

d2z a d z  ~* d z ' *  ^ 

dr z +-d7  ~ F~.(z) = 1--~-fa(Z)me (8) 

where 

f a ( z ) = 8 8 - ~ p f f ( z ) ~ f a ( x )  
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in according with definition (7); the L 2 term has been presented already. 
The expression 

(9) 
Oz" OZ '~ OX c~ 

generalizes the definition of the affine connection F~,(x) for the usual 
theory. In the given case, F~,(x)= O, since we are not considering a real 
gravitational field. However, F~(z)  is not equal to zero in our case. Indeed, 
by using (1) and taking into account the expression 

- - =  H a i I  ~ 

Oz" Ox Ox ~" Ox '~ 

for an inverse operation Oxa/Oz  ~ with respect to O z " / O x  a, we have 

O 211;~ ~_L 2( H~.._xx~ O2I]X OHa O2HA ~ _ _ q  - - - -  
[ ' ~ ( z )  = - - ;Lox  ~ Ox"  Ox"  Ox a Ox"  Ox ~ Ox ~] 

(lO) 

Equations (6) and (8) should be equivalent because they have been 
obtained in different ways under the same assumption about the quantum 
nature of space-time at small distances. Indeed, it is easily verified that with 
definition (9) and formulas (10) and (11) 

d z  ~ dz  ~" ,, ~ 
d~" dr F~(z)-=0 

so that the averaged equation (8) coincides explicitly with (6). Thus, the 
additional "gravitational" field with metric tensor (5) and affine connection 
(9) does not change the particle's equation of motion obtained in previous 
work (Namsrai, 1986, 1987), as expected. Nevertheless, the idea of a 
fictitious "gravitational" field arising from introducing quantum space-time 
turns out to be useful for reformulating electrodynamics within this point 
of view. Now we go on to this problem. 

A 

3. ELECTROMAGNETIC FIELD TENSOR F " ~ ( z )  IN 
QUANTUM SPACE-TIME 

To reformulate electrodynamics in quantum space-time, a transforma- 
tion law of the electromagnetic field tensor/%V(z) under the "quantum" 
passage (1) needs to be formulated. Here in accordance with the correspon- 
dence principle we require that the connection between the components of 
F ~ ( z )  and the generalized electric/~ (z) and magnetic/q(z) field strengths 
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remains valid in quantum space-time, i.e., 

]~01 -m- /~1, f ~  = /~2 ,  t~03 = E3 (11) 

/~a~ = _ F ~  

Our next problem is to define the antisymmetric t enso r /5~ (z )  trans- 
formed by means of the matrix azP/ax a. A simple form of this tensor is 

1 [Oz ~ Oz ~ FOa(x)+. - F~O(x) (12) 
~ ( z )  = ~ LTx~ ~ ~ ~ ~ 

or, using the concrete representation (1), we get 

+L(OII"(x) . 0II~(x) -,8'~ 
F"~(z)=F"~(x) \ ~ x O  F ~  1 " ) 

L 2 (0II~(x) OII"(x) 0II"(x) OII~(x).'~ 
+- -  Fap(x) ~ - -  (13) 

2 \ ~ x  ~ Ox a Ox ~ Ox ~ ] 

To average the latter expression, we must know the explicit form of the 
matrix function II~(x). In the tetrad representation 

II"(x)  = e~(x), y~ 

where 

[ eo= 1 el~ e ~  e ~  ' \ 
1 _ x~  r e~ = y ~  r e I = z~  r I [el=O e , -  

e~(x)=[eg=O eZ=xz/rp e~=zy/rp eZ=-p/r]  (14) 

\eo3=0 e~=-y /p  e 3= x/p e~=0 ] 
r = (x2q-y2q  - z2) 1/2, p = (x2q-y2)  '/2 

(y~ are Dirac matrices) the averaged values of (11) or (13) are expressed 
by the usual quantities E and H: 

YC, = (/q~) = (~23) = H, + L2~ 

a~2 = (/-t2) = (iff~') =/-/2+ L2(z/p)~ 
(15) 

~a3 = (/~3> = (~12) = H3 

~ :  (~) = <~o,): E ~ 

Here 

~ = 1  (Hr+EP) ,  p = [ r x v ]  
r 
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The problem of the unique construction of the covariant tensor F~(z )  
encounters a difficulty connected with the uncertainty in the choice of the 
order of multipliers and a definite arrangement of tensor indices in its 
definition. For example, rewriting (12) in the form 

1 Oz ~ Oz ~ p~ 1 Oz ~Oz ~Fao(x )  
F"~(z )  = F ~ ( z ) +  ~ r ; " ( z ) = ~  Ox" Ox ~ Fc~)-~ 2 Ox" Ox ~ 

we get the following results: 

Case (i): 

/ ~  (z) = ~ . (z)  ~ ( ~ ) ~ . ( z )  + ~o(z)k;"(z)~,~ (z) 

_ Ox ~ Ox ~ F~t3 + 1  T z ~  r ,~  + 1  1.2Foal~ ~ 
Oz ~ Oz ~ 2"~ ~ t ~  2 - -  -or 

x (rht~ rla~ - r/~ "qa~ ) (16a) 

Case (ii): 

~ (z): l:~(z)~,~ (z)L~ (z) + P;~(z)L~(z)~,~(z) 

Ox~ Oxt~ ~_~ ~2~  r~r +1  
= F~t3 Oz ~ Oz ~ 2 

x (I,~, 7/,~ A - ~,~ I~,) (16b) 

Here, by cons t ruc t ion , /~(z)  = -ae~, (z) for both cases, and I~f is given by 
expression (3b). 

Moreover, it is possible to generalize the usual definition 

F . . ( x ) - O A ' ( x )  OA~(x) 
O X  ~" O X  ~" 

in accordance with the correspondence principle for the fictitious "gravita- 
tional" field: 

^p "p 
P.~(z) = A.;~ -A. ; .  + [r~.(z) -r.Zz)]Ao(z) (17) 

This gives the following result: 
Case (iii): 

~:.~(z) = Ox'~ Ox~ F~o _ l}to~ oaa(x )  (16c) 
O z  ~* 0 2  ~ - -  - ~ , ~  O X  p 

where we have used the identity 

02X  p A Z ~ p 

Oz" az ~ = F~(z )  ~ :~Oz 
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since 
Oz* OX p 

Ox ~ Oz* ~ 

In definition (17), A.  (z); ~ denotes the covariant differentiation (Namsrai, 
1986) 

A 

a . (z) ;~  OA~,(z) ^ . - F~,(z)AA (z) 
0z ~ 

determined by using the affine connection (9). 
It should be noted that in expressions (16a)-(16c) the terms 

(Ox'~/Oz~)(Ox~/Oz*)F.t3(x) breaking the tensor structure do not contribute 
to any observable physical processes, since after averaging, these terms 
become zero at our level of accuracy (here taking into account quantities 
of the order of L 2 terms). 

Finally, we note that a gauge transformation of the electromagnetic 
field tensor F"~(z) should be studied on the whole space-time obtained by 
using the averaging procedure over the quantum space-time, i.e., the usual 
tensor F~"(x) and at the same time F"~(z) by construction are invariant 
under the gauge transformation 

A" (x) ~ A'" (x) = A" (x) + Of /Ox" 

where f ( x )  is an arbitrary function of coordinates x". 

4. THE MAXWELL EQUATIONS IN Q U A N T U M  SPACE-TIME 

In order to generalize the Maxwell equations to quantum space-time, 
we apply the general covariance principle to a fictitious "gravitational" field 
arising from the idea of the quantum character of space-time at small 
distances. For this purpose, we recall that in the absence of the quantum 
property of space-time or, equivalently, of the fictitious "gravitational" field, 
Maxwell's electrodynamic equations are 

a F ~ = _ j  ~ (18) 
ax ~ 

Ox~, F,~+ F:,~ +~x~ F~  : 0  (19) 

where J~ is the four-vector (J, e) and F ~ ( x )  is the usual electromag- 
netic field tensor; F ~2= H3, F ~ El, etc. (see above). Further, we find 
F ~ ( z )  and .l~(z) in arbitrary quantum coordinates, which lead to F~'(x)  
and J~(x) in quasilocal inertial tensors (determined above) under a quan- 
tum transformation of coordinates. Then, one can reduce equations (18) 
and (19) to general covariant ones by changing all derivatives to covariant 



Electrodynamics in Quantum Space-Time 1033 

ones: 

where 

A / z / ,  ' A F (z);, = - J / z ( z )  

~/z,(z),~ + g~(z),/z + _~/z (z),o = o 
(20) 

(21) 

_ O Z / z  p 
i / z ( z ) - T x ~ J  (x) 

Now we define covariant differentiation of F/z~ (z) by using affine connection 
(9) (Namsrai, 1987). Denote T/z"(z)= U / z ( z ) W ( z ) ;  then, by definition, 

~176 
[r/z '(z)]?~ ~ ~ 

O X  ~ , ,  . ,  ^ , ,  

= oZ" {[ u / z ( z ) ] ;  V'(z)  + u/z(~)[ W ( z ) ] ; }  

^ ), O X  p ^ . ,  

= O/z(z); .v  ( z ) + ~  u/z(~)EV'(z)];  

where the symbols [. �9 .];~ and [ .- .] ;~ mean covariant differentiation with 
respect to variables z* and x*, respectively. Next, the commutator [OxP/Oz *, 
/]~ (z)]_ needs to be defined. Taking into account U/z (z) = (Oz/z/Ox') U~(x),  
we get 

O Z  a ~ _ *-" * r a  

Therefore, 
�9 z ~ *" * . 4 -  [ 2T /ZP  ^ r ^ v x [T/z~'(z)];A U/z(z);~V~(z)+ O/z(z)V~(z);x . . . .  ;, U(,,,[V (z)l;p 

where 
A 

O/z(z):~ a U " ( z )  * ^ 
~ ~ v U'~(z)F"=,(z) 

Further, using the equality 

oO~(z) . o ' ~ ' ( z )  ~ /zo " ,  o g " ( z )  o 
V~(z )+  U / z ( z ) - - 7 - T ~ +  L I~x U (z)  Oz* (T/z~(z))= Oz* oz ax p 

we obtain finally 
A 

T " ' ( z ) ; ,  aT/z"(z) + ~=,(z)B~,(z)+ ~/z= ^ ,  - -  T (z)F~a (z) 
Oz a 

q- L 2 T * ~  ,,/z ~ /zp (x)[ Na,.a + FoB (x)I~a ] 

where we have used the commutator 

[P=",(z), 9 " ( z ) ] _ -  T2~ , / z  V~(x) 

(22) 
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and the approximation 

U , ~  U~(x) {[ '~(z)];~ q'A 

Here 

o9~(z)~ ~ , 2 , . .  U'(x) V"(x)r;~(x) 

OH ~ 02ii ~ 02ii ~ OH ~ 

N~,.~ = O x ,  Ox ~ Ox ~ Ox ~ Ox ~ Ox ~ 

p 
Fo~(x ) is the usual affine connection. In our case, we can assume 

F ~ ( x ) -  0, since we have not considered a real gravitational field. 
Thus, covariant differentiation of F"~(z) is given by an expffession of 

the type (22). An analogous calculation may be carried out for F , ~ ( z ) .  The 
result reads (Namsrai, 1987) 

az ~ r ~ . ( z ) f ~ ( z ) - F ; ~ ( z ) F ~ . ( z ) - L 2 p . ~ ( x )  

where 

~" I . a  F ~ (x)] • ~ 

,~p _ 8a p & 8  p 0 8p 
A..~ (x) -- I0~ F.,~ (x) + I.~ Ft3~(x ) +0-~  I .~ 

(23) 

Here F;~-= 0 should be assumed as well. 
Finding explicit forms of F ~ ( z ) ; ,  and/~..(z);~ by means of formulas 

(22) and (23), inserting these values into equations (20) and (21), and 
averaging, we have 

O F ' ~ ( x )  
J " ( x )  (24) 

Ox ~ 

where 

O F.~ (x )  OF~A(x) p o F . . ( X )  + L 2 ( ( Q . ~ A ) + ( Q ~ ) + ( Q . . ~ ) ) =  0 (25) 
OX a OX ~ OX ~" 

OH p OH ~ OF~ OII" OH ~ OF~ 

Q~vA Ox ~ Ox o Ox A Ox ~ Ox ~ Ox o 

[ 021-I 2 OH a + O[IP 021] a Oil s O21] 6 
_ _  _ _  _ _  + . . . .  Ft~ 6 

+ 2 1 , 0 2 ~  oxO ox ~ ox ~ oxO ox* oxO ox~  

al l"  OH ~ aFt8 ~ arl" aIP aF,~ +aI I "  oi l  ~ aF.~ ~ aH~ oi l  ~ aP,.. 
Ox ~ Ox p a x  ~ Ox ~ ax ~ ox o ax ~, ox  ~ ox ~ ax ~ ox p a x  ~ 

+ ( ~ o2 .  ~ ~176 

\ O x "  OxaOx ~ Ox*Ox ~Ox •] 
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In the last terms of the left-hand side of equation (25) the trace of the 
expressions Q~x, . . .  in the tetrad representation should be taken. Equation 
(24) means that the first two Maxwell equations 

VE=e,  V x H = a E / O t + J  

do not change their forms in quantum space-time, or, equivalently, the 
electromagnetic field current JU~(x) is conserved over the whole space-time 
continued from the quantum one. On the contrary, in quantum space-time 
the other two Maxwell equations 

VH = 0, V x E = -OH/Ot 

are changed in accordance with (25). Investigation of this problem is left 
to future work. 

5. EQUATION OF MOTION OF A CHARGED PARTICLE IN 
QUANTUM SPACE-TIME 

In the special theory of relativity the electromagnetic force acting on 
a charged particle is given by 

dx "/ dx ~' 
f~M = e~Tt3~,F~'t3(x) ~ = eF~ dr 

From this it follows immediately that in the quantum system of reference 
the electromagnetic force f " ( z )  takes the form 

/dz~'X ,, 
f~ ' (z)=eF'~t3(z)~-~z )gvt3(z ) 

~ , t 3 ( z  ) _ 3 z  '~ Oz t3 F O ~ ( x )  + 1  T2,t3,~ F~O 
Ox ~ OX ~ 2 "-" "P~ 

where 

(26) 

in accordance with definition (12). Thus, taking into account the identity 
( a z " l a x " )  a x ~ / a z  '~ - - 6 p ,  we obtain 

A 1 2 "t~ 3 dxV 

and therefore the averaged force in quantum space-time is equal to the 
usual electromagnetic one: 

(f'~ (z))=f~,M (X) 
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With the free particle equation (6) or (8) in quantum space-time, the 
averaged equation of motion for a charged particle reads 

d2 x '~ 
d~.2 = ~ l f ~  M (x) + l f q  (x) (27) 

mc me 

In the nonrelativistic limit, equation (27) reduces to the following equation: 

dPdt 2L2 - ~ 3m t- r---5- [ p -  n(nli)] - {(nv)[n x (vx n)]} 

e r 
= e E + -  (v x H), n = -  (28) 

c r 

for the tetrad field ej(x) ,  i , j  = 1, 2, 3, obtained from (14) by crossing out 
the first line and column and regularizing as by Dineykhan and Namsrai 
(1986). As an example, we consider the magnetic field only and a two- 
dimensional case. Then the equation of motion in the polar system of 
coordinates (p, q~) takes the form 

(p2+ 2LZ)~ + 2p/~b + wp/g = 0 
(29 

/7 - p ~ b  2 _ o J p < b  = 0 

where w = el l~ me. As a first approximation we use the solution po = const 
and r = - w t  when L = 0. This solution corresponds to circular motion of 
the particle in the plane perpendicular to the magnetic field lines, i.e., the 
(x, y) plane. Further, as a second approximation we seek a solution of (29) 
in the form p( t )  = po + L2pl and r  = r L2r After a simple calculation, 

Fig. 1. 

t4 

( )  ! 

I 
| 

L = o  

l-t 

L 4 o  
Illustration of the change of a particle's trajectory due tO quantum space-time in an 

external magnetic field. 
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we have 

pl ( t )  = A cos t o t -  (O0/to) C1 

~l( t) = ( A /  po) sin tot 

where A and c~ are integration constants. Thus, we see that the introduction 
of a fundamental length (arising from the quantum character of space-time) 
into the equation of motion leads to a change of the particle's trajectory in 
an external field. In this particular case, the circle over which the particle 
moves begins to become twisted, generally speaking, in an arbitrary manner 
(see Fig. 1 for an illustration). 

Finally, we note that in the three-dimensional case, depending on initial 
conditions, a particle's trajectory is very complicated and behaves like a 
strange attractor at least in the domain determined by the parameter L in 
the presence of an external electromagnetic field. 
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